A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle.
نویسندگان
چکیده
The diffusive properties of adjacent muscles at rest were evaluated in male (n = 12) and female (n = 12) subjects using diffusion tensor imaging (DTI). The principle, second and third eigenvalues, trace of the diffusion tensor [Tr(D)], and two anisotropic parameters, ellipsoid eccentricity (e) and fractional anisotropy (FA), of various muscles in the human calf were calculated from the diffusion tensor. Seven muscles were investigated in this study from images acquired of the left calf: the soleus, lateral gastrocnemius, medial gastrocnemius, posterior tibialis, anterior tibialis, extensor digitorum longus and peroneus longus. A mathematical model was also derived that relates the eigenvalues of the diffusion tensor to the muscle fiber volume fraction, which is defined as the volume of muscle fibers within a well-defined arbitrary muscle volume. Females on average had higher eigenvalues and Tr(D) compared with males, with the majority of muscles being statistically different between the sexes. In contrast, males on average had higher e and FA than females, with the large plantar flexors--soleus, lateral gastrocnemius, and medial gastrocnemius--producing statistically different results. The behavior of the mathematical model for variations in fiber volume fraction produced similar trends to those seen when the experimental data were fit to the model. The model predicts that a larger volume fraction of skeletal muscle in males is devoted to fibers than in females, but the true underlying source of the gender discrepancy remains unclear. Although the model does not fully account for other transport processes, it does provide some insight into the limiting factors that affect the diffusion of water in skeletal muscle measured by DTI.
منابع مشابه
Specific changes in water diffusivity due to passive shortening and lengthening of the thigh muscles – A Diffusion Tensor Imaging study
Introduction The organization of skeletal muscle fibers, or muscle architecture, strongly determines the muscle’s maximum force capacity [1]. Diffusion tensor imaging (DTI), widely used in brain studies, has recently emerged as an attractive tool for investigating the microstructure of skeletal muscle. In this latter, DTI provides information about the water molecules self-diffusion which is re...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملAge-Related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural MRI and Diffusion Tensor Imaging
The aim is to investigate the relationship between microstructural white matter (WM) diffusivity indices and macrostructural WM volume (WMV) among healthy individuals (20-85 years). Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NMR in biomedicine
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2005